eldorado.tu-dortmund.de/server/api/core/bitstreams/fcada542-d32d-437f-ad01-781d4ec9231c/content
Rg̃φ ( φ−1X,φ−1Y ;φ−1Y, φ−1X
) =Rgϕ⊕g̃ψ
( φ−1X,φ−1Y ;φ−1Y , φ−1X
) +
3
4
∥∥[φ−1X,φ−1Y ]v∥∥2
gϕ⊕g̃ψ
=Rgϕ⊕g̃ψ (( ϕ−1X,ψ−1Xk
) , ( ϕ−1Y, ψ−1Yk
) ; ( ϕ−1Y, ψ−1Yk
) , ( ϕ−1X,ψ−1Xk
)) +
3
4
∥∥[ (ϕ−1X,ψ−1Xk
) , [...] Rg̃φ ( φ−1X,φ−1Y ;φ−1Y, φ−1X
) =
1
2 Q ([ φ−1X,Y
] + [ X,φ−1Y
] , [ φ−1X,φ−1Y
]) (7.3)
− 3
4 Q ( φ [ φ−1X,φ−1Y
] , [ φ−1X,φ−1Y
]) (7.4)
+ 1
4 Q ([ φ−1X,Y
] − [ X,φ−1Y
] , φ−1
([ φ−1X,Y
] − [ X,φ−1Y
])) (7 [...] + 1
4 a−6
2
∥∥B2 2 +B12
∥∥2
+ 1
2 a−2
1 a−4 2
( 3− 2 a2
1a −2 2
) Q ( B1, B2
) + a−6
2
( 1− 3
4 a2
1a −2 2
)∥∥B2 0 +B2
1
∥∥2
+ 3
4
1
1 + a2 1
∥∥(1 + a−2 1
) B1
1 + ( 1 + a−2
2 (2− a2 1a −2 2 ) ) B2
1 +Bs …