www-ai.cs.tu-dortmund.de/LEHRE/SEMINARE/SS21/TrustworthyAIMachineLearning/zafar2017a.pdf
Moeller, C. Scheidegger, and S. Venkatasubramanian. Certifying and Removing Disparate Impact. In KDD, 2015.
[11] A. W. Flores, C. T. Lowenkamp, and K. Bechtel. False Positives, False Negatives, and False Analyses: [...] Understanding Racial Disparities in New York City’s Stop-and-Frisk Policy. Annals of Applied Statistics, 2015.
[13] G. Goh, A. Cotter, M. Gupta, and M. Friedlander. Satisfying Real-world Goals with Dataset C …